

Introducing Cosmology

- FB : https://www.facebook.com/astrowu.tam

Newton's Static Universe

- Universe is static and composed of an infinite number of stars that are scattered randomly throughout an infinite space.
- Universe is infinitely old and will exist forever without any major changes.
- Time and Space are steady and independent of one another and any objects in existence within them.

Why is the sky dark at night? (Kepler, 1610. Olbers, 1823) If the universe is infinite, then every line of sight should end on the surface of a star at some point.

 \Rightarrow The night sky should be as bright as the surface of stars!

Solution to Olbers's Paradox: Allan Poe(1848, Eureka), Kelvin(1901) If the universe had a beginning, then

we can only see light from galaxies that has had time to travel to us since the beginning of the universe. ⇒ The **visible** universe is **finite**!

- edged, finite
 no edge, infinite
 finite, edged
 infinite, no edge
- 1/16 1/24-1804
 Stable system
 No center
 Infinite(Euclide space)
 → insoluble

Cosmic Background Radiation

The radiation from the very early universe should still be detectable

Wilson (1936-) & Penzias (1933-)

discovered blackbody radiation with T = 2.73 K (dE_{λ}/d λ =1.063 mm, 160 GHz, Microwave)

be awarded the Nobel Prize for Physics in 1978

- Galaxy rotation problem: Dark Matter (1970-1980).
- Galaxy Totation problem. Dark Matter (1970-1980

Cosmology's Holy Grail

COBE detected anisotropies at the level 100 µK of the CMB. The density fluctuations are believed to have produced structure formation.

The Nobel Prize in Physics 2006

"for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation".

John C. Mather NASA Goddard Space Flight Center, Greenbelt, MD, USA, George F. Smoot University of California, Berkeley, CA, USA

Cosmic microwave background seen by Planck

The Cosmological Principle Considering the largest scales in the universe, we make the following fundamental assumptions: Homogeneity the local universe has the same physical properties throughout the universe. Isotropy

the local universe looks the same in any direction that one observes

Universality

the laws of physics are the same everywhere in the universe.

×

× ** *

Baryon Acoustic Oscillations

quantum fluctuation during inflation \rightarrow higher density of plasma \rightarrow radiation pressure from the photons resists the gravitational compression \rightarrow sound waves propagate in the universe, last to recombination era. (~37,6000 years) \rightarrow large scale structures formed from density fluctuations.

• size of Universe ~ 27.6 Mpc at that time

 major oscillation angular angle~ 1°
 <u>oscillation ~ 150</u> Mpc at present

The Early History of the Universe

- t=10⁻⁶ s, T=10¹³K, E= 1GeV. After Quark
- confinement period: proton and neutron appear.
- t=1s, T=6x10^oK, electron and positron appear. Gamma-ray background radiation
- Primordial Fireball ~380,000 yrs
- Asymmetry between matter and anti-matter: 109+1:1
 - $\label{eq:n-p-p-p} n \to p + e^- + \bar{\nu} \quad \mbox{half-life} ~10.5 \mbox{ mins}$
- deuterium bottleneck (unstable)
- After 3 mins, photon didn't break deuterium
- p : n~ 6 : 1, n + deuterium \rightarrow helium
- After 15 mins, nucleosynthesis stop
- Only H: He~9:1, little Li, Be

-	2013 Plan	ck result	S	
	Age of the universe (Ga)	Hubble's constant (^{kmy} Mpc·s)	Physical baryon density	Physical cold dark matter density
	13.819	67.11	0.022068	0.12029
	Dark energy density	Density fluctuations at 8h ⁻¹ Mpc	Scalar spectral index	Reionization optical depth
	0.6825	0.8344	0.9624	0.0925

